Die Lichtabsorption des Ni²⁺ und Co²⁺ in Phasen mit Niobit-, Rutil- und Trirutilstruktur

und

über ein neues Tantalat mit Niobitstruktur¹

Von

Horst Kasper²

Aus dem Anorganisch-chemischen Institut der Universität Bonn

Mit 5 Abbildungen

(Eingegangen am 16. März 1967)

Phasen mit Niobit-, Rutil-, Trirutil- und $PbSb_2O_6$ -Struktur wurden röntgenographisch und spektralphotometrisch untersucht. Dabei wurden Niobate, Tantalate, Arsenate, Antimonate und Wolframate des Ni und Co und solche des Mg, Zn, Cd mit isomorph eingebautem Ni und Co dargestellt. Die Kristallfeldparameter von Co²⁺ bzw. Ni²⁺ in den verschiedenen Phasen unterscheiden sich stark. Dies zeigt, wie sehr das Auftreten bestimmter Gittertypen von der Kristallfeldstabilisierungsenergie der Kationen mit unvollständig besetzter d-Schale abhängt.

Phases with niobite, rutile, trirutile and PbSb₂O₆-structure were investigated by X-rays and spectrophotometrically. Niobates, tantalates, arsenates, antimonates and tungstates of Ni and Co and of Mg, Zn, Cd, with isomorphously incorporated Ni²⁺ and Co²⁺ were prepared. The crystal field parameters of Ni²⁺ and Co²⁺ in these phases differ considerably. This shows, that the type of lattices formed depends on the crystal field stabilization energy of the cations.

1. Einleitung

In vorausgegangenen Arbeiten über die Beziehungen zwischen Farbe und Konstitution anorganischer Feststoffe wurden für den isomorphen

¹ Aus der Dissertation H. Kasper, Bonn, 1965.

² Jetzt: C-126 Lincoln Laboratory, Massachusetts Institute of Technology, Lexington (Mass.) 02173, USA.

Einbau farbgebender Kationen als Wirtgitter u. a. Phasen mit Ilmenitstruktur³⁻⁵ verwendet.

Wenn man davon ausgeht, daß die Ilmenitstruktur charakterisiert ist

- 1. durch die hexagonal dichte Packung der Sauerstoffatome,
- 2. durch die Koordinationszahl 6 aller Kationen,
- 3. dadurch, daß sich niedrig geladene Kationen neben höher geladenen auf koordinationschemisch äquivalenten Gitterplätzen befinden,

so liegt es nahe, für die experimentelle Bearbeitung des Problems "Farbe und Konstitution anorganischer Feststoffe" die Kristallgitter mit Niobitund Trirutilstruktur zu verwenden, die ebenfalls neben zweiwertigen auch höher geladene Kationen, beide hexakoordiniert, enthalten, entsprechend der Formel $M^{II}M_{2}^{V}O_{6}$. Sie besitzen eine weite Variationsmöglichkeit in bezug auf die zweiwertigen Kationen. Eine gewisse Verwandtschaft mit der Niobitstruktur hat auch Wolframit MgWO₄. Dementsprechend wurde die Lichtabsorption von Ni²⁺ und Co²⁺ nach iso-

Ta ⁵⁺	Sb^{5+}	As ⁵⁺
Т	T	s
т	Т	s
Т	Т	
Р	т	
N	T	
N	s	s
N	N	
) e	n erowskitähnl	rowskitähnlich

Tabelle 1.	Gittertypen	von	Verbindungen	$M^{II}M^{V}_{a}O_{6}$
------------	-------------	-----	--------------	------------------------

- $\Gamma = Trirutil$ $S = PbSb_2O_6$ -Struktur
- N = Niobit

³ O. Schmitz-DuMont und H. Kasper, Mh. Chem. 95, 1433 (1964).

⁴ O. Schmitz-DuMont und D. Grimm, Mh. Chem. 96, 922 (1965).

⁵ H. Kasper, Dissertation Univ. Bonn 1965.

morphem Einbau in Gitter mit Niobit- und Trirutilstruktur sowie Wolframitstruktur untersucht, worüber im folgenden berichtet wird.

Zunächst sollen die wichtigsten strukturellen Merkmale dieser Wirtgitter beschrieben werden, über deren Strukturtypus Tab. 1 orientiert. Es wird auch über eine neue von mir dargestellte Phase mit Niobitstruktur und über die Mischkristallbildung zwischen diesen Phasen berichtet.

2. Kristallchemische Betrachtungen

a) Niobitstruktur

In der Niobitstruktur $(M^{II}M_2^VO_6)$ bilden die Anionen eine angenähert hexagonal dichte Kugelpackung. Die Hälfte aller Oktaederlücken wird mit Kationen besetzt, und zwar so, daß in c-Richtung auf eine Schicht M^{2+} zwei Schichten Nb^{5+} folgen, wobei in jeder Schicht die Hälfte der Oktaederlücken besetzt ist. Es ist deshalb zu erwarten, daß die entsprechende Gitterkonstante b des orthorhombischen Niobits besonders stark von der Größe der Kationen abhängt, wie auch aus der Tab. 2 der Gitterkonstanten hervorgeht. Eine genaue Parameterbestimmung ist bei Verbindungen mit Niobitstruktur in letzter Zeit nicht bekanntgeworden. Es ist aber anzunehmen, daß, wie bei den Phasen mit Wolframitstruktur (vgl. 2 b), die Oktaederlücken der Kationen stark verzerrt sind.

	Tabelle	2.	Gitterkonstanten	von	Phasen	mit	Niobitstruktur	[Å]
--	---------	----	------------------	-----	--------	-----	----------------	-----

	a	b	С	
 MgNb ₂ O ₆ ⁶	5,017	14,18	5,665	
MgNbTaO ₆	5,038	$14,18_2$	5,689	
NiNb2O66	5,013	14,01	5,661	
Nio 1Mg0.9Nb2O6	5,033	14.17_{6}	5,698	
CoNb ₂ O ₆ ⁶	5,036	14,12	5,701	
ZnNb2O66	5,036	14,18	5,715	
ZnTa2O66	5,058	14,08	5,682	
MnNb2O6 ⁸	5,081	14,39	5,766	
MnTa ₂ O ₆ ⁶	5,092	14,41	5,750	
MnSb ₂ O ₆ ⁶	5,106	14,18	5,736	
CdNb ₂ O ₆ ⁷	5,15	14,8	5,85	
$Ni_{0.01}Cd_{0.99}Nb_2O_6$	5,141	$14,77_{6}$	5,846	
$Ni_{0.05}Cd_{0.95}Nb_2O_6$	5,137	$14,74_{3}$	5,839	
$Ni_{0,2}Cd_{0,8}Nb_2O_6$	5,122	$14,63_{7}$	5,822	
$Co_{0,1}Cd_{0,9}Nb_2O_6$	5,136	$14,71_{3}$	5,838	
$\mathrm{Co}_{0.5}\mathrm{Cd}_{0.5}\mathrm{Nb}_{2}\mathrm{O}_{6}$	5,095	$14,46_{5}$	5,783	
$CdTa_2O_6$	5,145	14,78	5,851	

⁶ G. Bayer, Ber. Dtsch. Keram. Ges. 39, 535 (1962).

⁷ F. Jona, G. Shirane und R. Pepinsky, Physic. Rev. 98, 903 (1955).

In der Reihe der ternären Oxide der allgemeinen Formel $M^{II}M_2^VO_6$ kommen sowohl Niobit- als auch Rutilstruktur vor (Tab. 1). Es erscheint daher plausibel, daß unter Umständen eine Phase dieser Zusammensetzung dimorph ist und sich reversibel von der Niobit- in die Rutilstruktur umzuwandeln vermag. Nach Goldschmidt⁸ gilt dies für MgNb₂O₆, CoNb₂O₆ und NiNb₂O₆. Während die reversible Umwandlung des NiNb₂O₆ oberhalb 1300° C von der Niobit- in die Rutilstruktur bestätigt werden konnte, war dies bei der analogen Umwandlung der beiden anderen Niobate nicht der Fall. Goldschmidt gibt an, daß die Niobitphase des Co die Formel Co₃Nb₄O₁₄ hat und somit aus den Komponenten Co₃O₄ und Nb₂O₅ besteht, also Co³⁺ enthalten muß. Die spektralphotometrische Untersuchung (s. Abschn. 4 a) gibt keinen Hinweis darauf, daß die Verbindung Co³⁺ enthält. Auffallend ist, daß Goldschmidt für die drei Niobate erhebliche Phasenbreiten findet, während ich bei allen von mir untersuchten Niobaten ebenso wie bei den Rutil- und Trirutilphasen keine breiten Homogenitätsgebiete feststellen konnte.

b) Wolframitstruktur

Åhnlich wie die Niobitstruktur baut sich die Struktur des Wolframits MgWO₄ auf, jedoch sind hier die Schichten der Kationen abwechselnd mit Mg²⁺ und W⁶⁺ besetzt. Die gleiche Struktur wie MgWO₄ besitzt CoWO₄, NiWO₄ sowie CdWO₄, obwohl der Radius von Cd²⁺ beträchtlich größer ist als die Radien von Mg²⁺, Co²⁺ und Ni²⁺. Eine vollkommene Mischkristallbildung in den Systemen des CdWO₄ mit NiWO₄ und CoWO₄ war wegen des großen Radius von Cd²⁺ nicht zu erwarten. Immerhin läßt sich im CdWO₄ wenigstens in geringem Ausmaße Cd²⁺ durch Ni²⁺ (Co²⁺) ersetzen, wie die Darstellung von Ni_{0,01}Cd_{0,99}WO₄ beweist.

Beim NiWO₄ wurde eine genaue Parameterbestimmung von Keeling⁹ durchgeführt. Es zeigte sich, daß die Koordinationsoktaeder der Kationen stark verzerrt sind. So ergeben sich die Abstände Ni²⁺—O²⁻ zu 2,02; 2,09 und 2,13 Å.

c) Trirutilstruktur-Umwandlung der Niobit- in die Trirutilstruktur

Die Trirutilstruktur läßt sich vom TiO₂ dadurch ableiten, daß Ti⁴⁺ zu einem Drittel durch ein zweiwertiges Kation M^{2+} und zu zwei Dritteln durch ein fünfwertiges Kation M^{5+} geordnet ersetzt wird. Man gelangt so zu der allgemeinen Formel $M^{II}M_2^{V}O_6$. M^{5+} kann Ta⁵⁺ oder Sb⁵⁺ sein.

Die Rutil- und Trirutilphasen, bei denen die hochgeladenen Kationen edelgaskonfiguriert (z. B. Ta^{5+}) sind, haben ein Verhältnis der Gitter-

⁸ H. J. Goldschmidt, Metallurgia [Manchester] 62, 211 und 241 (1960).

⁹ R. O. Keeling, Jr., Acta Cryst. [Kopenhagen] 10, 209 (1957).

konstanten c_0/a_0 , das im allgemeinen < 0.655 ist, während es bei cuprokonfigurierten (z. B. Sb⁵⁺) im allgemeinen > 0.655 ist (Tab. 3).

	a Å	¢ Å	c/a bzw. c/3a
NiNb ₂ O ₆	4,727 + 0,001	$3,049_7 \pm 0,001$	0,645
NiNb1.5Ta0.5O6	4,726 + 0,001	$9,142_5 \pm 0,001$	0,645
NiNbSbO ₆	$4,6865 \pm 0,001$	$9,158 \pm 0,001$	0,651
$CoNb_{1.5}Ta_{0.5}O_6$	$4,742 \pm 0,001$	$9,165 \pm 0,001$	0,644
CoNbTaO6	$4,739_4 + 0,001$	$9,162 \pm 0,002$	0,644
NiTa ₂ O ₆	$4,719 \pm 0,001$	9,123 \pm 0,001	0,644
$Ni_{0.1}Zn_{0.9}Ta_2O_6$	4,733 + 0,001	$9,200 \pm 0,001$	0,648
$Ni_{0.1}Mg_{0.9}Ta_2O_6$	4,717 + 0,001	$9,202 \pm 0,002$	0,650
MgTa ₂ O ₆	$4,716_4 + 0,001$	$9,204_5 \pm 0,001$	0,651
CoTa2O66	4,73	9,16	0,645
NiTaSbO6	4,680 + 0,001	$9,167 \pm 0,001$	0,653
NiSb ₂ O ₆	4,641 + 0,001	$9,222_5 \pm 0,001$	0,662
MgSb2O66	4,63	9,23	0,664
ZnSb2O66	4,66	9,24	0,661
Nio 1Zno.9Sb2O6	4,664 + 0,001	9,261 + 0,001	0,662
CoSb ₂ O ₆	$4,652_2 + 0,001$	$9,281_5 + 0,001$	0,665
0.1(NiNb2O6)0.9TiO2	$4,622_5 + 0,001$	$2,9795 \pm 0,001$	0,645
TiO ₂ ⁶	4,594	2,958	0,644
SnO_2^{6}	4,74	3,19	0,673

Tabelle 3. Gitterkonstanten von Rutil- und Trirutilphasen

Von TiO₂ ($c_0/a_0 = 0.644$) und SnO₂ ($c_0/a_0 = 0.673$) wurden von *Baur*¹⁰ genaue Parameterbestimmungen durchgeführt; es ergaben sich folgende Abstände:

Beim TiO₂, das eine Rutilphase mit edelgaskonfigurierten Kationen repräsentiert, ist demnach die Abweichung von einer regulär oktaedrischen Kationenumgebung, verglichen mit dem SnO₂ (Sn⁴⁺ ist cuprokonfiguriert), erheblich (2%). Analog werden die Verhältnisse bei den anderen Rutilbzw. Trirutilphasen hochgeladener edelgas- und cuprokonfigurierter Kationen liegen. Jedoch ist die Verzerrung der oktaedrischen Umgebung der Kationen bei den Rutilphasen wesentlich geringer als z. B. beim NiWO₄ (vgl. oben).

Wenn $M^{II} = Mg$, Co oder Ni und $M^{V} = Ta (M^{II}Ta_2O_6)$, liegt Trirutilstruktur vor, während ZnTa₂O₆ eine Überstruktur des Niobitgitters besitzt. Es war daher zu erwarten, daß bei genügender Substitution des Zn²⁺ durch Co²⁺ oder Ni²⁺ eine Umwandlung in das Trirutilgitter erfolgen würde. Dies konnte ich bestätigen, und zwar genügt bereits der Einbau

¹⁰ W. H. Baur, Acta Cryst. 9, 515 (1956).

von 0,1 Ni²⁺ an Stelle von Zn²⁺, um diese Strukturänderung zu bewirken $(Ni_{0,1}Zn_{0,9}Ta_2O_6)$, während sich $Co_{0,1}Zn_{0,9}Ta_2O_6$ in eine Co-arme Niobitund eine Co-reichere Trirutilphase entmischt. Der isomorphe Einbau von 0,2 Co²⁺ (Co_{0,2}Zn_{0,8}Ta₂O₆) führt aber die quantitative Strukturänderung (\rightarrow Trirutilgitter) herbei.

Wird eine gewisse Größe des Radius von M^{2+} oder der Differenz $r(M^{2+}) - r(M^{5+})$ überschritten, so ist die Trirutilstruktur nicht mehr stabil und geht in eine hexagonale Schichtstruktur über, z. B.:

 $MgSb_2O_6$ (Trirutiltypus) $\rightarrow MnSb_2O_6$ (Niobittypus) $\rightarrow CdSb_2O_6$ (hexagonal, PbSb₂O₆-Typus).

d) Struktur des PbSb₂O₆

Das Gitter der PbSb₂O₆-Struktur ist dem Ilmenitgitter nahe verwandt und beruht auf einer hexagonal dichten Sauerstoffpackung; dabei werden jedoch die Kationenschichten unterschiedlich stark besetzt. Es wechseln Sb⁵⁺-Schichten ([]⁶ zu zwei Drittel besetzt) mit Pb²⁺-Schichten ([]⁶ zu einem Drittel besetzt), wobei sich die Schichten wie beim Niobit jeweils auf Lücke befinden. Die Gitterkonstanten (CoAs₂O₆: a = 4,775[diese Arbeit] bzw. 4,773 [nach *Taylor* und *Heyding*¹¹], c = 4,499 bzw. 4,494 Å; NiAs₂O₆: a = 4,759 bzw. 4,759, c = 4,427 bzw. 4,431 Å) sind erwartungsgemäß erheblich kleiner als die entsprechenden a und c/3 der Ilmenitphasen³, ⁴.

e) Ein neues Tantalat mit Niobitstruktur

Magnesium-, Nickel- und Kobalt-Tantalat(V) M^{II} Ta₂O₆ haben Rutilstruktur. Da der Strukturtyp von Phasen der allgemeinen Formel $M^{II}M_2^VO_6$ auch von der Art des Kations M^{II} , insbesondere auch vom Ionenradius, mitbestimmt wird (siehe: die Strukturänderung von M^{II} Sb₂O₆ beim Austausch M^{II} ==Mg gegen M^{II} =Cd), wurde versucht, ein Cadmiumtantalat darzustellen. Sofern beim Sintern des Oxidgemisches eine Temperatur von 1150 bis 1250° C eingehalten wird, entsteht CdTa₂O₆, das tatsächlich *nicht* Rutil-, sondern *Niobit*-Struktur besitzt und somit isotyp mit dem bereits bekannten Mangantantalat ist (s. Tab. 1). Der Einbau von Ni²⁺ gelang nur in ganz geringen Mengen (Ni_{0,01}Cd_{0,99}Ta₂O₆), dadurch bedingt, daß NiTa₂O₆ keine Niobit-, sondern *Trirutil*-Struktur besitzt.

f) Neue Mischphasen mit Niobitstruktur

Da CoNb₂O₆, NiNb₂O₆, CdNb₂O₆ und CdTa₂O₆ Niobitstruktur besitzen, konnte erwartet werden, daß sich Cd²⁺ bis zu einem gewissen Grade

¹¹ J. B. Taylor und R. D. Heyding, Canad. J. Chem. 36, 597 (1958).

durch Ni²⁺ bzw. Co²⁺ und umgekehrt Ni²⁺ bzw. Co²⁺ wenigstens partiell durch Cd²⁺ ersetzen lassen würde. Eine lückenlose Mischkristallbildung erschien wegen der großen Unterschiede in den Radien von Ni²⁺ und Co²⁺ einerseits und Cd²⁺ andererseits unwahrscheinlich. Die röntgenographische Untersuchung gesinterter Mischungen von NiNb₂O₆ und CdNb₂O₆ ergab, daß mit steigender Sintertemperatur die Gitterkonstante der CdNb₂O₆-Phase praktisch nicht ändert. Daraus ist zu schließen, daß mit steigender Sintertemperatur von der CdNb₂O₆-Phase erhebliche Mengen an NiNb₂O₆ aufgenommen werden, während NiNb₂O₆ unter den gegebenen Bedingungen praktisch kein CdNb₂O₆ zu lösen vermag. Die Gitterkonstanten der Niobitphasen Ni_{0,01}Cd_{0,99}Nb₂O₆, Ni_{0,05}Cd_{0,95}Nb₂O₆ und Ni_{0,2}Cd_{0,8}Nb₂O₆ zeigen den zu erwartenden Gang (Tab. 2), besonders in Richtung der "hexagonalen" Achse *b* tritt eine Stauchung des Gitters ein.

Im System $\text{Co}_x\text{Cd}_{1-x}\text{Nb}_2\text{O}_6$ wurden die Phasen $\text{Co}_{0,05}\text{Cd}_{0,95}\text{Nb}_2\text{O}_6$ und $\text{Co}_{0,5}\text{Cd}_{0,5}\text{Nb}_2\text{O}_6$ dargestellt. Die Darstellung von $\text{Co}_{0,5}\text{Cd}_{0,5}\text{Nb}_2\text{O}_6$ weist in diesem System auf eine weitergehende Mischkristallbildung als im System $\text{Co}_x\text{Cd}_{1-x}\text{TiO}_3$ hin⁴.

g) Neue Mischphasen durch Austausch von Nb⁵⁺ gegen Ta⁵⁺, System NiNb₂O₆/NiTa₂O₆

Es war zu erwarten, daß sich in der *Rutil*phase NiNb₂O₆ Nb⁵⁺ durch Ta⁵⁺ austauschen lassen würde. Da NiTa₂O₆ die *Trirutil*struktur besitzt, war die Frage, ob eine lückenlose Mischkristallreihe besteht, von besonderem Interesse. Es konnten die homogenen Phasen NiNb_{2-x}Ta_xO₆ mit x = 0.5, 0,8 und 1 gewonnen werden. Bei x = 0.5 zeigt das Debyeogramm die Reflexe des Rutils ohne Überstrukturlinien, während bei x = 1(NiNbTaO₆) die Überstrukturlinien des Trirutilgitters deutlich hervortreten.

NiNb_{1,2}Ta_{0,8}O₆ zeigte nach Sinterung sowohl bei 1320° C (12 Stdn.) als auch bei 1520° C (1 Stde.) schwach die Überstrukturreflexe des Trirutils. Demnach ist anzunehmen, daß eine lückenlose Mischkristallreihe NiNb_{2-x}Ta_xO₆ besteht und daß die Struktur im wesentlichen von dem relativen Gehalt an Nb⁵⁺ und Ta⁵⁺ abhängt und von einer gewissen Ta-Konzentration an sich die Ta⁵⁺ und Nb⁵⁺ entsprechend der Trirutilstruktur zu ordnen beginnen, was dann im Debyeogramm sichtbar wird.

h) System CoNb₂O₆/CoTa₂O₆ und MgNb₂O₆/MgTa₂O₆

Durch partielle Substitution von Nb durch Ta in $CoNb_2O_6$ und $MgNb_2O_6$ (beides Niobitstruktur) sollte die Bildung von Rutilphasen begünstigt werden, da die entsprechenden Tantalate Trirutilstruktur besitzen. Versuche ergaben, daß $CoTa_{0,5}Nb_{1,5}O_6$ eine Rutilphase darstellt,

bei der die Überstrukturreflexe, welche der Trirutilstruktur entsprechen, nur schwach zu sehen sind. Demgegenüber bleibt bei der Substitution von 1 Nb⁵⁺ durch 1 Ta⁵⁺ im MgNb₂O₆ die Niobitstruktur erhalten¹². Die Ten-

denz, Niobitphasen zu bilden, ist demzufolge bei Mg^{2+} größer als bei Co^{2+} und hier wiederum größer als bei Ni^{2+} .

i) Neue Mischphasen durch Austausch von Nb⁵⁺ bzw. Ta⁵⁺ durch Sb⁵⁺

Beim Austausch von Nb⁵⁺ gegen Ta⁵⁺ ändert sich die Konfiguration der äußeren Elektronenschale (Edelgaskonfiguration) im M^{\vee} nicht. Es war

¹² H. Kasper, Z. anorg. allgem. Chem. (im Druck).

die Frage, ob ein Austausch von Nb⁵⁺ bzw. Ta⁵⁺ gegen Sb⁵⁺, das Cuprokonfiguration besitzt, ebenfalls möglich ist und welchem Strukturtypus die Mischkristalle Ni M_{2-x}^{V} Sb_xO₆ ($M^{V} = Nb^{V}$ oder Ta^V) angehören. NiSb₂O₆ kristallisiert wie NiTa₂O₆ im Trirutil-, NiNb₂O₆ (Hochtemperaturmodifikation) aber im Rutilgitter. Es war zu erwarten, daß der Ersatz von Ta⁵⁺ im NiTa₂O₆ durch Sb⁵⁺ ohne Strukturänderung erfolgen würde. Tatsächlich zeigt das Debyeogramm von NiTaSbO₆ die Überstrukturreflexe des Trirutils. Auch im Debyeogramm des Mischkristalles NiNbSbO₆ sind die Überstrukturreflexe der Trirutilstruktur zu finden, obwohl NiNb₂O₆ die Rutilstruktur besitzt, sofern bei Temperaturen > 1300° C gesintert wird.

3. Die Lichtabsorption des Ni²⁺

a) $NiNb_2O_6$

Da NiNb₂O₆ in *zwei* Modifikationen (Niobit- und Rutilgitter) vorkommt, war zu fragen, wie sich die Modifikationsumwandlung in der Lichtabsorption des Ni²⁺ bemerkbar macht. Die Farbkurven (Abb. 1) zeigen in beiden Fällen die charakteristische Lichtabsorption des [Ni²⁺]⁶. Vergleicht man die beiden Farbkurven, so prägen sich bei der *Niobit*phase (Abb. 1, Kurve 2) alle drei Hauptabsorptionsbanden des Ni²⁺ als Maxima aus, zwischen denen tiefe Minima liegen. Bei der *Rutil*phase (Abb. 1, Kurve 1) findet man demgegenüber nur breitere Absorptionsbanden, die sich verhältnismäßig wenig aus dem Untergrund herausheben, und die dritte Bande kann im UV-Anstieg nicht mehr lokalisiert werden. Weiter sind die Lagen der Absorptionsbanden in der Rutilphase nach UV verschoben (Tab. 4), bedingt durch einen Anstieg des Kristallfeldparameters Δ von 7200 cm⁻¹ auf 8100 cm⁻¹.

b) Im Ni-haltigen Zinktantalat ZnTa₂O₆.

Wie bereits erwähnt, kristallisiert $ZnTa_2O_6$ in einer Überstruktur des Niobits, aber nach Substitution des Zn^{2+} durch kleine Mengen Ni²⁺ (Ni_{0,1} $Zn_{0,9}Ta_2O_6$) liegt diese Mischphase in der Trirutilstruktur vor. Da Ni_{0,01} $Zn_{0,99}Ta_2O_6$ noch Niobitstruktur besitzt, bestand auch hier die Möglichkeit, den Effekt einer Strukturänderung bei gleichbleibenden Koordinationszahlen auf die Lichtabsorption zu untersuchen. Die Spektren beider Phasen zeigen die gut ausgeprägten Banden des [Ni²⁺]⁶ (Abb. 1, Kurven 4 u. 5). Die Lagen der Absorptionsbanden der *Niobit*phase (Kurve 5) sind aber gegenüber der Trirutilphase (Kurve 4) stark nach IR verschoben (Tab. 4), wobei der Kristallfeldparameter Δ um 900 cm⁻¹ von 7700 cm⁻¹ (Ni_{0,1} $Zn_{0,9}Ta_2O_6$) auf 6800 cm⁻¹ (Ni_{0,01} $Zn_{0,99}Ta_2O_6$) sinkt.

H. 5/1967]

Gitter- typus	Phase	$\Delta riangleq {}^3T_{2g}({}^3F)$	³ A ₂ (³ F)	¹ Eg	$^{1}\mathrm{T}_{2}$	${}^{3}T_{1}^{(^{3}P)}$	В
Niobit	NiNb ₂ O ₆	7200	12 200	(13 700)	(19 800)	22 400	860
••	Ni0.1Mg0.9Nb2O6	7000	12 100	(13 700)	(19 600)	$22 \ 350$	880
**	Ni _{0.1} Zn _{0.9} Nb ₂ O ₆	6900	12000	$(13\ 700)$	$(19\ 400)$	$22 \ 200$	880
77	Ni0.01Zn0.99Ta2O6	6800	11 700	$(13\ 600)$. ,	21 800	860
	Ni0.01Cd0.99Nb2O6	5900	11 200	13 500		21 000	890
	Ni0.05Cd0.95Nb2O6	6000	10 900	13 500		21 200	895
	Ni _{0.2} Cd _{0.8} Nb ₂ O ₆	6150	10 800	13 500		$21 \ 400$	895
	Ni0.01Cd0.99Ta2O6	6000	11 000			$21 \ 400$	910
Rutil	NiNb ₂ O ₆	8100	$(12\ 500)$	$(14\ 000)$	(19 800)		
••	NiNb1.5Ta0.5O6	8100	$(12\ 000)$	$(14\ 000)$	(19 800)		
Trirutil	NiNb _{1.2} Ta _{0.8} O ₆	7900	12 300	(14 000)	(20,000)	(22 500)	(785)
**	NiNbTaO ₆	7800	12 200	$(14\ 000)$	$(20\ 000)$	$(22\ 500)$	(800)
••	NiTa ₂ O ₆	7800	$12 \ 300$	14 200	(20, 200)	23 200	850
	NiTaSbO ₆	8200	$(13\ 000)$ -	$-(14\ 300)$	(20, 800)	$24\ 200$	880
,,	NiSb2O6	8900	(15 400)-	-(13700)	$(21\ 500)$		000
,,	NiShNbOa	8200	(13,000)-	-(14 400)	(20.500)	(23,000)	(790)
,,	Nia 1Mga Ta2O6	7800	12 400	$(14\ 000)$	(20, 400)	$23\ 200$	850
,,	Nio 1Zno 0Ta2O6	7700	12 200	$(14\ 000)$	(20,000)	23 100	860
,,	Nio 1Mgo oSb2O6		(13 000 -	-15500	(20 000)	20 100	000
Wolframit	NiWO4	7300	12 100	(13,600)	(19.500)	22 100	820
	Nio orCdo aoWO4	6250	10 500	13 400	(10,000)	20 600	830
PhSb ₂ Oe	NiAs206	7150	$12\ 150$	(14, 500)	(20,000)	22700	890
Ilmenit	NiTiO. ³	7300	12 100	(13, 400)	(=0 000)	22 300	840
,,	Ni _{0.01} Cd _{0.99} TiO ₃ ³	6000	10 300	13 000		20 300	830

Tabelle 4. Die Lichtabsorption des Ni²⁺ [cm⁻¹]

() = nur als Schulter ausgeprägt.

Schlußfolgerung

Der Übergang einer Niobitstruktur in eine Rutil- oder Trirutilstruktur, der ohne wesentliche Änderung der Stöchiometrie erfolgt, ist mit einem beträchtlichen Anstieg des Kristallfeldparameters Δ der im Gitter isomorph eingebauten farbgebenden Kationen (Co²⁺, Ni²⁺) verbunden.

Wie bereits erwähnt, unterscheidet sich die Niobit- von der Rutilstruktur durch die stärkere Verzerrung der Koordinationsoktaeder der Kationen. Das schwächere Kristallfeld am Ort des Ni²⁺ in den Niobaten hängt hiermit sicher ursächlich zusammen. Andererseits läßt sich der Übergang Niobit \rightarrow Rutil, der nur beim NiNb₂O₆ bestätigt werden konnte, auf Grund der besonders großen Kristallfeldstabilisierung des Ni²⁺ im Rutilgitter verstehen. Daß dies erst bei höheren Temperaturen die Modifikationsumwandlung bewirkt, kann folgende Ursachen haben: Die Ordnung im Niobitgitter betrifft nicht nur die Kationenverteilung, sondern infolge der Schichtenfolge

Monatshefte für Chemie, Bd. 98/5

auch die in den verschiedenen Koordinationsrichtungen unterschiedlichen Nb—O-Bindungen. Mit steigender Temperatur werden sich diese Unterschiede mehr und mehr verwischen, so daß schließlich die Umwandlung in die Rutilstruktur erfolgt, in der die NiO₆-Oktaeder regelmäßiger sind und der Feldstärkenparameter Δ (Ni²⁺) > im Gitter der Niobitstruktur ist.

Auch die Strukturänderung des Zinktantalats nach Substitution kleiner Zinkmengen durch Nickel wird auf der Kristallfeldstabilisierung des Nickels beruhen. Da Phasen der ungefähren Zusammensetzung Ni_{0,01}Zn_{0,99}Ta₂O₆ (Überstruktur des Niobitgitters) und Ni_{0,1}Zn_{0,9}Ta₂O₆ (Trirutiltypus) koexistieren und da sich bei geringer Variation der Stöchiometrie einer Phase die Kristallfeldstärke nur in zu vernachlässigender Weise ändert, muß man annehmen, daß hier in der (Tri)-Rutilphase die zweiwertigen Kationen stärker gebunden sind als in der Niobitphase, und umgekehrt die hochgeladenen Kationen in der Niobitphase stärker als in der Trirutilphase an O²⁻ gebunden sind. Auf Grund der großen oktaedrischen Kristallfeldstabilisierung des Ni²⁺ gegenüber dem Zn²⁺, das keinen Beitrag zur Kristallfeldstabilisierung liefert, neigen Ni²⁺-haltige Phasen mehr zur Trirutilstruktur als die entsprechenden Zn-Verbindungen.

Die Bedeutung der ausgeprägten Tendenz des Ni²⁺, reguläre Oktaederlücken zu besetzen, und der Zunahme der Kristallfeldstabilisierungsenergie bei einer Strukturumwandlung ohne Änderung der Stöchiometrie konnte schon früher am Strukturwechsel MgAlInO₄ \rightarrow NiAlInO₄ gezeigt werden¹³. Während sich Ni²⁺ im MgAlInO₄, einem Schichtengitter vom CuAlInO₄-Typus mit verzerrten Oktaederlücken, in einem außerordentlich schwachen Kristallfeld ($\Delta = 5450$ cm⁻¹) befindet, hat es im NiAlInO₄ (Spinell mit ziemlich regulären Oktaederlücken) einen Feldparameter Δ von 8750 cm⁻¹.

c) Die Lichtabsorption des Ni²⁺ in Mischphasen mit Niobitstruktur

Die Remissionsspektren der Ni²⁺-haltigen Niobitphasen zeigen alle intensive und gut ausgeprägte Absorptionsbanden des $[Ni^{2+}]^6$. Die drei Hauptabsorptionsbanden des Ni²⁺ sind als scharfe Maxima (Abb. 1 und 2) ausgebildet, während die den spinverbotenen Übergängen zuzuordnenden Banden nur als Schultern hervortreten (Tab. 4). Die Absorptionsbanden

$$\frac{1}{s} = \frac{\sqrt{1-2} \operatorname{diff}}{2 R_{\text{diff}}}$$

¹³ O. Schmitz-DuMont und H. Kasper, Z. anorg. allgem. Chem. **341**, 252 (1965). In dieser Arbeit ist folgendes zu berichtigen: S. 254, Zeile 14, soll es heißen: 2,75 statt 3,173 Å; Zeile 15, soll es heißen: 2,92 Å statt 3,37 Å; S. 257, Abb. 3: Ordinatenmaßstab % statt Å; S. 267: Die Gleichung muß lauten: $k = (1-R_{\rm efft})^2$

von $Ni_{0,1}Mg_{0,9}Nb_2O_6$, $Ni_{0,1}Zn_{0,9}Nb_2O_6$ und $Ni_{0,01}Zn_{0,99}Ta_2O_6$ sind gegenüber denen des $NiNb_2O_6$ nur geringfügig nach IR verschoben (Tab. 2),

Abb. 2. Die Lichtabsorption des ${\rm N}^{2+}$ in Phasen mit Niobit- und Wolframitstruktur:

1. Ni _{0,2} Cd _{0,8} Nb ₂ O ₆ ;
2. Nic.05Cde.95 Nb2O6;
3. Ni0,01Cd0,99Nb2O6;
4. Ni,,,1Cd,,,9 Ta2O;
5. Nigra1Cdara WO4;
6. NiWO ₄ .

was nach den Erfahrungen analoger Substitutionen in anderen Systemen zu erwarten war (vgl. $Ni_xMg_{1-x}TiO_3^3$).

Es wurde gefunden³, daß sich kleine Mengen Ni^{2+} in CdTiO₃ isomorph einbauen lassen ($Ni_{0.05}Cd_{0.95}TiO_3$) und daß der Kristallfeldparameter des

Ni²⁺ im CdTiO₃ erheblich kleiner (6000 cm⁻¹) als im NiTiO₃ (7300 cm⁻¹) ist. Da, wie erwähnt, auch im CdNb₂O₆ geringe Mengen Cd²⁺ gegen Ni²⁺ isomorph ausgetauscht werden können, war zu untersuchen, ob in dem betreffenden Mischkristall am Ort des Ni²⁺ ein ähnlich schwaches Kristall-feld herrscht wie in Ni_xCd_{1-x}TiO₃ ($x \leq 0.05$).

Tatsächlich ergab sich, daß Δ von Ni_{0,01}Cd_{0,99}Nb₂O₆ (5900 cm⁻¹) um 1300 cm⁻¹ niedriger ist als Δ von NiNb₂O₆ (7200 cm⁻¹) in Übereinstimmung mit der Erniedrigung von Δ beim Übergang NiTiO₃ \rightarrow Ni_{0,05}Cd_{0,95}TiO₃. Da sich im CdNb₂O₆ bis zu 0,2 Cd²⁺ durch Ni²⁺ ersetzen lassen (Ni_{0,2}Cd_{0,8}Nb₂O₆) kann man die Zunahme von Δ mit der Ni²⁺-Konzentration und die hiermit parallel gehende Abnahme der Gitterkonstanten gut verfolgen.

Wie bereits gesagt, konnten geringe Mengen Ni²⁺ auch in CdTa₂O₆ (Niobitstruktur) anstelle von Cd²⁺ eingebaut werden. Der Kristallfeldparameter des Ni²⁺ im Ni_{0,01}Cd_{0,99}Ta₂O₆ stimmt praktisch mit demjenigen der analogen Nb-Phase überein, was auf Grund der gleichen Struktur zu erwarten war.

d) Die Lichtabsorption des Ni²⁺ in Mischphasen mit Wolframitstruktur

Die Lichtabsorption des Ni²⁺ im System Ni_xMg_{1-x}WO₄ haben bereits Ferguson, Wood and Knox¹⁴ untersucht. Sie fanden einen Kristallfeldparameter $\Delta = 7100 \text{ cm}^{-1}$ des [Ni²⁺]⁶, der von dem des Ni²⁺ in Ni_{0,1}Mg_{0,9}Nb₂O₆ (Niobitstruktur, $\Delta = 7000 \text{ cm}^{-1}$) nur wenig abweicht. Für das reine NiWO₄ ergibt sich ein etwas größerer Parameter $\Delta = 7300 \text{ cm}^{-1}$; vgl. NiNb₂O₆ (Niobitphase) $\Delta = 7200 \text{ cm}^{-1}$. Da sich, wie bereits erwähnt, im CdWO₄ geringe Mengen Cd²⁺ durch Ni²⁺ ersetzen lassen (Ni_{0,01}Cd_{0,99}WO₄), läßt sich der Effekt einer Gitteraufweitung durch Vergleich der Farbkurven von NiWO₄ (A) und Ni_{0,01}Cd_{0,99}WO₄ (B) studieren. Beim Übergang $\mathbf{A} \rightarrow \mathbf{B}$ verschieben sich die Hauptabsorptionsbanden, wie zu erwarten war, nach IR. Dies ist bereits an der Änderung der visuellen Farbe zu erkennen: $\mathbf{A} = \text{gelb}$, $\mathbf{B} = \text{rosa}$, entsprechend einer Abnahme des Kristallfeldparameters Δ um 1050 cm⁻¹ $\Delta(\mathbf{A}) = 7300 \text{ cm}^{-1}$, $\Delta(\mathbf{B}) = 6250 \text{ cm}^{-1}$, die nicht so groß ist wie beim Übergang NiNb₂O₆ \rightarrow $\rightarrow \text{Ni_{0,01}Cd_{0,99}\text{Nb}_2O_6}$ (beides Niobitstruktur; s. Abschnitt 3 c).

e) Die Lichtabsorption des Ni²⁺ in Verbindungen und Mischphasen mit Rutil- und Trirutilstruktur

Die Lichtabsorption der Rutilphase NiNb₂O₆ wurde bereits erwähnt (Abschnitt 3 a). Die Lichtabsorption der Trirutilphase NiTa₂O₆ zeigt im Gegensatz dazu alle Hauptabsorptionsbanden gut ausgeprägt (Abb. 3).

¹⁴ J. Ferguson, K. Knox und D. L. Wood, J. Chem. Physics 35, 2236 (1961).

Abb. 3. Die Lichtabsorption des Ni^{2+} in Phasen mit Rutil- und Trirutilstruktur:

1.	NiNh.O.
5	NichNhO .
z.	MISDINDO ₆ ;
З,	$N1Ta_2O_6;$
4.	$NiNb_{1,5}Ta_{0,5}O_{6}$;
5.	NiNb _{1,2} Ta _{0,8} O ₆ ;
6.	NiNbTaO ₅ ;
7.	NiSb ₂ O ₆ ;
8,	NiSbTaO _s ;
9.	Nio,1Zno,Ta2O6;
10.	Nig., Mga., Ta2O6.

Dies kann daher rühren, daß auf Grund der statistischen Verteilung in der Rutilphase dort die Kristallfelder etwas schwanken und die UV-Absorptionskante weiter nach IR verschoben ist als beim geordneten Trirutil NiTa₂O₆. Der Kristallfeldparameter Δ ist beim NiTa₂O₆ (7800 cm⁻¹) kleiner als beim NiNb₂O₆ (8100 cm⁻¹), obwohl die Gitterkonstanten (Tab. 3) sich praktisch nicht ändern. Dies kann folgendermaßen gedeutet werden:

Im Rutilgitter mit statistischer Kationenverteilung sind die Felder am Ort des M^{II} und am Ort des M^{V} einander ähnlicher als im Trirutilgitter. Geht die Rutil- in die Trirutilstruktur über, so hat die hiermit eintretende Ordnung der unterschiedlich geladenen Kationen M^{II} und M^{V} zur Folge, daß die Feldstärke am Ort des M^{V} zu- und die Feldstärke am Ort des M^{II} abnimmt.

Aus dem Spektrum von NiNb_{1,5}Ta_{0,5}O₆ (Rutilstruktur) ergibt sich für Ni²⁺ ein Kristallfeldparameter $\Delta = 8100 \text{ cm}^{-1}$, der mit dem für NiNb₂O₆ (Rutilstruktur) gefundenen übereinstimmt ($\Delta = 8100 \text{ cm}^{-1}$). Beim Übergang zur Phase NiNbTaO₆ mit Trirutilstruktur nimmt Δ ab und ist ungefähr gleich dem für NiTa₂O₆ (Trirutiltypus) gefundenen Feldparameter $\Delta = 7800 \text{ cm}^{-1}$. Zwischen diesen beiden Δ -Werten (8100 und 7800 cm⁻¹) liegt $\Delta = 7900 \text{ cm}^{-1}$ von NiNb_{1,2}Ta_{0,8}O₆ (Trirutiltypus). Ein Vergleich der Δ -Werte der Trirutilphasen NiTa₂O₆ ($\Delta = 7800 \text{ cm}^{-1}$), Ni_{0,1}Mg_{0,9}Ta₂O₆ ($\Delta = 7800 \text{ cm}^{-1}$) und Ni_{0,1}Zn_{0,9}Ta₂O₆ ($\Delta = 7700 \text{ cm}^{-1}$) zeigt erneut, daß sich das Kristallfeld am Ort des eingebauten Ni²⁺ beim Übergang von der reinen Ni-Verbindung zu den Ni-haltigen Mg- oder Zn-Verbindungen kaum ändert, sofern die betreffenden Phasen dem gleichen Gittertypus angehören.

Die Trirutilphase NiSb₂O₆ ist intensiv grün. Ni²⁺ hat hier ein ungewöhnlich starkes Kristallfeld mit einem Parameter $\Delta = 8900 \text{ cm}^{-1}$ (Tab. 4). Außerdem zeigt die erste Hauptabsorptionsbande ${}^{3}A_{2g} ({}^{3}F) \rightarrow$ $\rightarrow {}^{3}T_{2g} ({}^{3}F)$ eine Strukturierung (Abb. 3, Kurve 7), was beim Ni²⁺ sonst nicht gefunden wird. Die dritte Hauptabsorptionsbande [${}^{3}A_{2g} ({}^{3}F) \rightarrow$ $\rightarrow {}^{3}T_{1} ({}^{3}P)$] ist im UV-Anstieg der Absorption nur als Schulter angedeutet. Die starke Erhöhung der Kristallfeldstärke gegenüber derjenigen im NiTa₂O₆ (7800 cm⁻¹) kann aus der sehr geringen Schrumpfung des Gitters allein *nicht* erklärt werden.

Wie bereits erwähnt, wird die oktaedrische Umgebung der Kationen im Trirutilgitter mit dem cuprokonfigurierten Sb⁵⁺ stärker regulär als im NiTa₂O₆ sein (s. Abschnitt 2 c). Man muß annehmen, daß in den Verbindungen mit cuprokonfigurierten Kationen M^{V} die Bindungen M^{II} —O größere kovalente Anteile besitzen und somit zu einem stärkeren Kristallfeld am Ort des M^{II} führen als bei den entsprechenden Verbindungen mit edelgaskonfigurierten Kationen M^{V} . Dies wurde auch bei anderen Phasen beobachtet (Spinelle¹⁵, Cr³⁺-Rutilphasen¹⁶, vgl. auch CoSb₂O₆, Abschnitt 4 c).

Die Feldstärke am Ort des Ni²⁺ im NiSbTaO₆ ($\Delta = 8200 \text{ cm}^{-1}$) liegt zwischen derjenigen von NiSb₂O₆ (Trirutilgitter $\Delta = 8900 \text{ cm}^{-1}$) und NiTa₂O₆ (Trirutilgitter $\Delta = 7800 \text{ cm}^{-1}$). Auch die Gitterkonstanten *a* und *c* findet man in der Mitte zwischen denen von NiSb₂O₆ und NiTa₂O₆ (Tab. 3).

Der Kristallfeldparameter des Ni²⁺ in NiSbNbO₆ [Δ (NiSbNbO₆) = = 8100 cm⁻¹] liegt nahe bei Δ (NiNb₂O₆) (8100 cm⁻¹). Daß sich Δ (NiSbNbO₆) nicht in der Mitte von Δ (NiSb₂O₆) und Δ (NiNb₂O₆) befindet, ist insofern zu erwarten, als — im Gegensatz zur Rutilphase NiNb₂O₆ — NiSbNbO₆ Trirutilstruktur hat und der Kristallfeldparameter einer hypothetischen Trirutilphase NiNb₂O₆ analog zum NiTa₂O₆ (Trirutilgitter) erheblich kleiner sein würde.

f) Die Lichtabsorption des Ni^{2+} im NiAs₂O₆

Schließlich wurde noch die Lichtabsorption des NiAs₂O₆ untersucht (Abb. 1), das im CdSb₂O₆-Typus (hexagonales Schichtengitter) kristallisiert. Hier ist die Kristallfeldstärke (7150 cm⁻¹) noch etwas kleiner als beim NiNb₂O₆ (Niobit) und NiTiO₃ (Ilmenitgitter).

Die Strukturanalogie der Schichtengitter des Ilmenits und $CdSb_2O_6$ -Typus läßt diesen kleinen Feldparameter verständlich erscheinen; auffallend ist aber der Gegensatz zu den Antimonaten analoger Stöchiometrie, die — für oxidische Phasen — extrem hohe Feldparameter besitzen.

4. Die Lichtabsorption des Co^{2+}

Nach der Untersuchung der Lichtabsorption des $[Ni^{2+}]^6$ sollte auch die des $[Co^{2+}]^6$ untersucht werden, um festzustellen, wie weitgehend sich diese Kationen analog verhalten. Dabei ergibt sich gegenüber dem Ni²⁺ jedoch die Schwierigkeit, daß der Feldparameter Δ nicht direkt aus der Lage der ersten Bande bestimmt werden kann. Er berechnet sich beim $[Co^{2+}]^6$ aus der Differenz zwischen der Lage der zweiten Hauptabsorptionsbande $[^4T_1 (^4F) \rightarrow ^4A_2 (^4F)]$ und der ersten $[^4T_1 (^4F) \rightarrow ^4T_2 (^4F)]$. Benutzt man diesen Wert aber, so erhält man unter Verwendung sinnvoller B-Werte nur unbefriedigende, d. h. zu kleine Wellenzahlen für die Lage der ersten Hauptabsorptionsbande ${}^4T_2 (^4F)$. Deshalb wird im folgenden angenommen, daß eine Komponente des Grundterms gegenüber der regulären oktaedrischen Kristallfeldaufspaltung besonders *stabilisiert* ist. Dies kann eine Folge der Spin—Bahn-Kopplung oder eines Jahn—

¹⁵ H. Kasper, J. Inorg. Nucl. Chem. (im Druck).

¹⁶ H. Kasper, Z. phys. Chem. [Frankfurt] (im Druck).

¹⁷ J. Ferguson, D. L. Wood und K. Knox, J. Chem. Physics 39, 881 (1963).

Teller-Effektes — bedingt durch den bahnentarteten Grundterm ${}^{4}T_{1g}$ des Co²⁺ — sein. Diese Stabilisierung $\bar{\nu}_{st}$ wurde durch Vergleich der

Abb. 4. Die Lichtabsorption des Co²⁺ in Phasen mit Niobit- und Wolframitstruktur:

1. $Co_{0,1}Mg_{0,0}Nb_2O_6;$ 2. $Co_{0,5}Cd_{0,5}Nb_2O_6;$ 3. $Co_{0,1}Zn_{0,0}Nb_2O_8;$ 4. $Co_{0,01}Zn_{0,00}Ta_2O_6;$ 5. $COWO_4;$ 6. $Co_{0,01}Cd_{0,00}WO_4.$

gefundenen mit der aus Δ und einem plausiblen B-Wert berechneten Lage (Tab. 5) der ersten Bande bestimmt. Der *Racah*parameter B wurde aus Δ und der Differenz der Wellenzahlen $\bar{\nu}_{III} - \bar{\nu}_{st}$ [$\bar{\nu}_{III}$ entsprechend $\rightarrow \rightarrow {}^{4}T_{1}$ (${}^{4}P$)] berechnet.

Itheritypes Transo $^4 T_3 (^4 T_3)$ $^4 T_3 ($		Tabelle	5. Die Licl	htabsorptio	n des Co ²⁺ [[cm ⁻¹]			
	Gittertypus	Phase	${}^{4}T_{2}({}^{4}F)$	$^{4}\Lambda_{2}(^{4}P)$	${}^{4}T_{1}^{(4P)}$	${}_{b}^{2}T_{1}$	'St	Φ	B
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Niobit	CoNb2O6	6500	13 300	17 100	19 200	600	6800	760
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\mathrm{Co}_{0,1}\mathrm{Mg}_{0,9}\mathrm{Nb}_{2}\mathrm{O}_{6}$	6400	$13 \ 100$	17 100	19 150	600	6700	770
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	"	$\mathrm{Co}_{0,1}\mathrm{Zn}_{0,9}\mathrm{Nb}_{2}\mathrm{O}_{6}$	6400	13 100	17 100	19 150	600	6700	770
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	"	$\operatorname{Co}_{0,5}\operatorname{Cd}_{0,5}\operatorname{Nb}_{2}\operatorname{O}_{6}$	6100	$12\ 200$	$16\ 800$	$(19\ 300)$	800	6100	170
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	"	$\operatorname{Co}_{0,05}\operatorname{Cd}_{0,95}\operatorname{Nb}_{2}\operatorname{O}_{6}$	5700	11500	16800	$(19\ 300)$	700	5800	190
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	••	${ m Co}_{0,01}{ m Zn}_{0,99}{ m Ta}_{2}{ m O}_{6}$	6600	12500	17 600	$(19\ 500)$	1500	5900	790
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Trirutil	$Co_{0,1}Mg_{0,9}Ta_2O_6$	7700	$15\ 000$	18 000	$(20\ 000)$	1000	7300	780
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	"	$\mathrm{Co}_{0,2}\mathrm{Zn}_{0,8}\mathrm{Ta}_{2}\mathrm{O}_{6}$	0077	$15\ 000$	17 900	$(19\ 500)$	1000	7300	160
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$CoTa_2O_6$	7800	$15\ 000$	18 000	$(19\ 500)$	1500	7200	740
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	"	$CoNbTaO_6$	7800	$(14\ 500)$	$(17\ 500)$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	55	$\mathrm{CoNb}_{1,5}\mathrm{Ta}_{0,5}\mathrm{O}_{6}$	7700		(17 400)				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6 6	$\mathrm{Co}_{0,1}\mathrm{Mg}_{0,9}\mathrm{Sb}_{2}\mathrm{O}_{6}$	9300	(17500)	$(21 \ 000)$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	**	$CoSb_2O_6$	9300		•				
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Wolframit	$CoWO_4$	6500	13 100	17 100	$19\ 200$	800	6600	760
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	Coo, 01Cdo, 99W O4	5200 (5600)	10 600	$16\ 200$ (17\ 800).	(19 000)			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$PbSb_2O_6$	CoAs ₂ O ₆	7100	(11 500) (15 000)	17 900	(19 000) (20 500)			
$\label{eq:constraint} \begin{array}{ccccc} & & & & & & & & & & & & & & & & &$	Ilmenit	$Co_{0,01}Cd_{0,99}TiO_{3}^{4}$	5200	$10\ 350$	15 950	18 660	800	5150	760
$, \qquad Co_{0,1}Mg_{0,9}TiO_3{}^4 \qquad 6700 \qquad 13\ 300 \qquad 17\ 000 \qquad 18\ 750 \qquad 1000 6600 740$	66	$CoTiO_3^4$	6400	$13\ 200$	16550	18 600	500	6800	740
	56	$\mathrm{Co}_{0,1}\mathrm{Mg}_{0,9}\mathrm{TiO}_{3}{}^{4}$	6700	$13 \ 300$	17 000	18 750	1000	6600	740

2121

a) Die Lichtabsorption des Co^{2+} in Niobitphasen

Die Lichtabsorption des Co^{2+} in Niobitphasen ergibt die für $[Co^{2+}]^6$ charakteristische Farbkurven (Abb. 4). Wie bei den Ni²⁺-Niobitphasen

sind die Absorptionsbanden scharf ausgeprägt und auch die Interkombinations-Bande $[\rightarrow {}^{2}_{p}T_{1}]$ ist in allen Fällen gut zu erkennen.

6. CoSb₂O₆; 7. CoAs₂O₆.

Die Kristallfeldparameter von $CoNb_2O_6$ (6800 cm⁻¹), $Co_{0,1}Mg_{0,9}Nb_2O_6$ (6700 cm⁻¹) und $Co_{0,1}Zn_{0,9}Nb_2O_6$ (6700 cm⁻¹) stimmen wie bei den entsprechenden Ni-Phasen praktisch überein (Tab. 5). Demgegenüber weicht die Lage der Absorptionsmaxima Co^{2+} im $Co_{0,01}Zn_{0,99}Ta_2O_6$

(Überstruktur des Niobit) von derjenigen in den anderen Niobitphasen stark ab.

Wie bereits erwähnt, konnten auch im System $\text{Co}_x \text{Cd}_{1-x} \text{Nb}_2 \text{O}_6$ Mischkristalle dargestellt werden. Auch hier findet man eine beträchtliche Abnahme des Kristallfeldparameters Δ beim Übergang $\text{CoNb}_2 \text{O}_6$ $(\Delta = 6800 \text{ cm}^{-1}) \rightarrow \text{Co}_{0,05} \text{Cd}_{0,95} \text{Nb}_2 \text{O}_6$ (5800 cm⁻¹).

b) Die Lichtabsorption des Co²⁺ in Phasen mit Wolframitstruktur

Die Lichtabsorption des Co^{2+} in CoWO_4 wurde von *Ferguson*, *Wood* und *Knox*¹⁷ untersucht, deren Ergebnisse bestätigt werden konnten. Der Einbau von Co^{2+} in CdWO₄ war wiederum möglich ($\operatorname{Co}_{0,01}\operatorname{Cd}_{0,99}WO_4$) und die Absorptionsbanden waren gegenüber denen des CoWO₄, wie erwartet, erheblich nach IR verschoben. Besonders die erste Hauptabsorptionsbande [\rightarrow ⁴T₁ (⁴F)] besitzt eine stark unsymmetrische Form (Abb. 4, Kurve 6), wodurch eine Fixierung der Termlagen und eine Bestimmung der Feldparameter erschwert wird.

c) Die Lichtabsorption des Co²⁺ in Trirutilphasen

Die Existenz einer reinen Rutilphase CoNb_2O_6 wurde — wie erwähnt — nicht bestätigt, aber $\text{CoNb}_{1,5}\text{Ta}_{0,5}O_6$ zeigt ein Debyeogramm, das dem einer teilweise ungeordneten Trirutilphase entspricht. Die Lichtabsorption des $[\text{Co}^{2+}]^6$ in $\text{CoNb}_{1,5}\text{Ta}_{0,5}O_6$ und $\text{CoNb}\text{Ta}O_6$ (Trirutilgitter) tritt nur relativ schwach aus dem Untergrund hervor. Die Lage der ersten Bande stimmt mit der des CoTa_2O_6 praktisch überein. [Vgl. dagegen die voneinander abweichenden Δ -Werte von Ni²⁺ in NiNb_{1,5}Ta_{0,5}O₆ (Rutilgitter) und in NiTa₂O₆ (Trirutilgitter), Abschnitt 3 d.]

Die Spektren der Co-haltigen Trirutilphasen zeigen die charakteristischen Absorptionsbanden des $[Co^{2+}]^6$ (Abb. 5) ebenso wie die Ni-haltigen Trirutilphasen nur die Banden des $[Ni^{2+}]^6$ aufweisen.

In den Phasen $CoTa_2O_6$, $Co_{0,1}Mg_{0,9}Ta_2O_6$ und $Co_{0,2}Zn_{0,8}Ta_2O_6$ treten die Maxima intensiv aus dem Untergrund heraus und liegen — wie zu erwarten war — praktisch jeweils bei den gleichen Wellenzahlen. Der Vergleich von $Co_{0,01}Zn_{0,99}Ta_2O_6$ (Niobit) mit $Co_{0,2}Zn_{0,8}Ta_2O_6$ (Trirutil) ergibt auch hier eine Verschiebung der Lagen der Absorptionsmaxima der Trirutil- gegenüber der Niobitphase nach UV. Vergleicht man die Lage der ersten Absorptionsbande des $[Ni^{2+}]^6$ und $[Co^{2+}]^6$, z. B. in Niobit- oder Ilmenitphasen, mit denen des Trirutils, so stellt man fest, daß normalerweise die erste Bande des $[Co^{2+}]^6$ gegenüber der des $[Ni^{2+}]^6$ in der entsprechenden Phase einige 100 cm⁻¹ nach IR verschoben ist, während sie bei den genannten Trirutilphasen praktisch die gleichen Wellenzahlen hat (Tab. 5).

Beim CoSb₂O₆ (Trirutil) findet man die erste Hauptabsorptionsbande $[\rightarrow {}^{4}T_{1} ({}^{4}F)]$ bei 9300 cm⁻¹; sie ist gegenüber der ersten Ni²⁺-Hauptabsorptionsbande im NiSb₂O₆ (8900 cm⁻¹) um 400 cm⁻¹ nach UV verschoben, während, wie oben erwähnt, im allgemeinen die erste Hauptabsorptionsbande der Co-haltigen Phasen bei kleineren Wellenzahlen liegt als diejenige der analogen Ni-haltigen Phasen. Neben der ersten Hauptabsorptionsbande erscheinen die anderen Banden des [Co²⁺]⁶ nur als Schultern im Anstieg der Charge transfer-Übergänge im UV. Die Bande bei 9300 cm⁻¹ ist, verglichen mit der ersten Bande von CoTa₂O₆ (7800 cm⁻¹), um 1500 cm⁻¹ nach UV verschoben, obwohl durch die gegenläufige Änderung der Gitterkonstanten a und c (Tab. 3) das Volumen pro Formeleinheit praktisch konstant bleibt. Obwohl Δ nicht genau bestimmt werden kann, folgt aus der Lage der ersten Bande eine für oxidische Phasen außergewöhnlich große Kristallfeldstabilisierung des [Co²⁺]⁶, die hier ebenso wie beim NiSb₂O₆ (vgl. Abschnitt 3 e) auf stärkere kovalente Bindungsanteile schließen läßt.

d) Die Lichtabsorption des Co^{2+} im $CoAs_2O_6$

Die Farbkurve des $CoAs_2O_6$ zeigt die für $[Co^{2+}]^6$ charakteristischen Banden. Bemerkenswert ist, daß die erste Bande hier bei 7100 cm⁻¹ liegt, also fast an der gleichen Stelle wie die erste Bande des Ni²⁺ im NiAs₂O₆ (7150 cm⁻¹). Meist befindet sich die erste Bande des $[Co^{2+}]^6$ bei beträchtlich kleineren Wellenzahlen als die des $[Ni^{2+}]^6$, wie die folgende Gegenüberstellung zeigt:

Substanz	$CoAs_2O_6$	CoNb ₂ O ₆ *	CoTiO ₃
$\nu_{I}(cm^{-1})$	7100	6500	6400
Substanz	NiAs ₂ O ₆	NiNb ₂ O ₆ *	NiTiO ₃
$\nu_{I}(cm^{-1})$	7150	7200	7300

*Niobitstruktur

Es ist besonders auffallend, daß in der Reihe MAs_2O_6 , MNb_2O_6 , $MTiO_3 \overline{\nu}_1$ bei M = Co abnimmt, aber bei M = Ni geringfügig zunimmt.

5. Zusammenfassung

1. Die Untersuchung der Lichtabsorption in Phasen mit Niobit- und Wolframitstruktur ergibt am Ort des Ni²⁺ und Co²⁺ ähnlich schwache Kristallfelder, wie sie bereits früher im NiTiO₃ und CoTiO₃ gefunden wurden.

2. In CdNb₂O₆ und in CdWO₄ läßt sich Cd²⁺ durch Co²⁺ und Ni²⁺ zumindest partiell austauschen. Im Vergleich zu den Spektren der Cd-freien

Verbindungen (CoNb₂O₆, NiNb₂O₆, CoWO₄, NiWO₄) erscheinen die Hauptabsorptionsbanden der Cd-haltigen Phasen nach IR verschoben infolge der Weitung des Gitters, die eine Abnahme von Δ bewirkt. Diese IR-Verschiebung ist auch visuell zu erkennen: z. B. NiNb₂O₆ = gelb, Ni_{0,01}Cd_{0,99}Nb₂O₆ = rosa.

3. Beim Übergang Niobit \rightarrow Rutil- bzw. Trirutilstruktur nimmt Δ am Ort des Co²⁺ bzw. Ni²⁺ zu. Extrem große Δ -Werte, die für oxidische Phasen außergewöhnlich hoch sind, findet man bei NiSb₂O₆ und CoSb₂O₆ (Trirutil-gitter).

4. Die vorliegenden Ergebnisse zeigen erneut, daß die Ausbildung verschiedener Gittertypen beim Kationenaustausch nicht nur von den Ionenradien abhängt, sondern auch von der unterschiedlichen Stabilität der Kationen in regulär und verzerrt oktaedrischer Koordination. So findet man, daß in der Reihenfolge Mg²⁺, Co²⁺, Ni²⁺ und Nb⁵⁺, Ta⁵⁺, Sb⁵⁺ die regulär oktaedrische Koordination stärker bevorzugt wird. Dies läßt sich in der Reihe Mg²⁺, Co²⁺ und Ni²⁺ auf Grund der Kristallfeldstabilisierung verstehen.

Experimentelle Angaben

Die Substanzen wurden aus feingepulverten Oxid- und Carbonatgemischen hergestellt. Die Gemenge wurden i. a. auf etwa 800° C vorgesintert, erneut pulverisiert und dann zu Pillen gepreßt und gesintert (Tab. 6). Die antimonhaltigen Phasen wurden zwecks Oxydation von Sb₂O₃ bei etwa linear mit der Zeit steigender Temp. einer 24stdg. Vorsinterung unterworfen. Bei der Darstellung von $CoSb_2O_6$ wurde ein etwa 5proz. Überschuß von Sb eingesetzt, um eine Schwarzfärbung durch Spinellbildung ($Co_7Sb_2O_{12}$) zu vermeiden. Das überschüssige Sb₂O₅ verdampfte während der Sinterung. Die Arsenverbindungen wurden unter Verwendung von $As_2O_5 \cdot n$ H₂O gewonnen.

Die Gitterkonstanten wurden aus Pulveraufnahmen mit einer Seemannkamera (Umfang 360 mm) nach der asymmetrischen Methode von *Straumanis* gewonnen. Die Berechnung erfolgte mit zwei FORTRAN-Programmen für die

Gitter- typus	Phase	Sinter- temp.(°C)	Sinter- zeit (Stunden)	Farbe
Niobit	$NiNb_2O_6$	900	12	gelb
**	$Ni_{0,1}Mg_{0,9}Nb_2O_6$	1070	35	gelb
"	$Ni_{0,1}Zn_{0,9}Nb_2O_6$	1170	48	gelb
,,	$Ni_{0,01}Zn_{0,99}Ta_2O_6$	1200	5	gelblich
,,	$Ni_{0,01}Cd_{0,99}Nb_2O_6$	1240	1	rosa
,,	$\mathrm{Ni}_{0,05}\mathrm{Cd}_{0,95}\mathrm{Nb}_{2}\mathrm{O}_{6}$	1200	$\frac{1}{2}$	rosa
,,	$Ni_{0,2}Cd_{0,8}Nb_2O_6$	1300	1	gelblich-rosa
,,	$Ni_{0,01}Cd_{0,99}Ta_2O_6$	1210	$\frac{1}{2}$	rosa
,,	$CoNb_2O_6$	1100	$1\overline{2}$	blau
,,	$\mathrm{Co}_{0,1}\mathrm{Mg}_{0,9}\mathrm{Nb}_{2}\mathrm{O}_{6}$	1070	35	hellblau
**	$\mathrm{Co}_{0,1}\mathrm{Zn}_{0,9}\mathrm{Nb}_{2}\mathrm{O}_{6}$	980	20	hellblau
s 7	$\mathrm{Co}_{0,5}\mathrm{Cd}_{0,5}\mathrm{Nb}_{2}\mathrm{O}_{6}$	1280	2	blau
30	$\mathrm{Co}_{0,01}\mathrm{Zn}_{0,99}\mathrm{Ta}_{2}\mathrm{O}_{6}$	1260	1/2	hellblau
"	$MgNbTaO_6$	1480	1	weiß

Tabelle 6. Darstellungsbedingungen und Farbe der Phasen

Gitter- typus	Phase	Sinter- temp.(°C)	Sinter- zeit (Stunden)	Farbe
Rutil	NiNb ₂ O ₆	1400	1	grün
,,	$\mathrm{NiNb_{1,5}Ta_{0,5}O_6}$	1530	1∕4	grün
Trirutil	$MiNb_{1,2}Ta_{0,8}O_6$	1520	2	grün
	NiNbTaO ₆	1500	1/2	grün
,,	NiTa ₂ O ₆	1500	1/2	gelb
••	NiTaSbO ₆	1280	ĩ	grün
,,	$NiSb_2O_6$	1190	4	grün
**	NiSbNbO ₆	1280	1	grün
,,	$Ni_{0.1}Mg_{0.9}Ta_2O_6$	1270	35	gelb
**	$Ni_{0.1}Zn_{0.9}Ta_2O_6$	1340	1	gelblich
**	$Co_{0.1}Mg_{0.9}Ta_2O_6$	1070	35	violett-rosa
,,	$Co_{0,2}Zn_{0,8}Ta_2O_6$	1150	4	violett-rosa
,,	$CoTa_2O_6$	1000	12	violett-rosa
,,	CoNbTaO ₆	1320	1	blau-violett
,,	CoNb _{1.5} Ta _{0.5} O ₆	1460	1/2	blau-violett
>>	$CoSb_2O_6$	1070	$3\overline{5}$	orange-ocker
Wolframit	NiWO4	1010	4	gelb
	Nie orCde eeWO4	1050	1	rosa
,,	CoWO4	900	2	hlau
,,	$Co_{0,01}Cd_{0,99}WO_4$	1050	1	hellblau
PbSboOs	NiAs2O6	570	1/2	gelb
2.000200	CoAs ₂ O ₆	570	1/2	violett-blau
"	00140400		/2	

Fortsetzung (Tabelle 6)

IBM 7090-Rechenanlage, von denen das eine die experimentellen $1/d^2$ -Werte und das andere $1/d^2$ -Werte aus vorgegebenen Gitterkonstanten berechnete.

Das Remissionsspektrum der Kristallpulver wurde mit dem Spektralphotometer der Firma Zeiss PMQII mit Infrasiloptik gemessen. Dabei wurde die diffuse Remission des Pulvers verglichen mit derjenigen des Weißstandards (MgO oder das undotierte Wirtgitter). Die wiedergegebenen charakteristischen Farbkurven wurden nach der Beziehung von Schuster—Kubelka—Munck

$$\lg rac{k}{s} = \lg rac{(1 - R_{
m diff})^2}{2 R_{
m diff}}$$

aus der diffusen Remission erhalten.

k = Absorptionskoeffizient, s = Streukoeffizient, R_{diff} = Bruchteil der remittierten Strahlung, bez. auf den Weißstandard.

Auch an dieser Stelle möchte ich meinem verehrten Lehrer, Herrn Prof. Dr. O. Schmitz-DuMont, für seine freundliche Unterstützung, und der Deutschen Forschungsgemeinschaft für ihre finanzielle Hilfe meinen verbindlichsten Dank aussprechen.

2126